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Energy Dissipation in Stretching Filled Rubbers 

A. N. GENT, Insti tute of Polymer Science, T h e  University of Akron, 
Akron, Ohio 44325 

Synopsis 
Energy expended irreversibly in stretching filled rubbers is calculated for a simple 

two-phase series model: a soft phase resembling the corresponding unfilled rubber and 
a hard phase in series with the soft phase. It is assumed that the Iubber is initially 
wholly in the hard state and that it changes progressively into the softened state on 
stretching, as proposed by Mullins and Tobin. For a wide range of model parameters, 
the dissipation of mechanical energy is predicted to  rise to  about 40% of the input 
energy at large strains. This predicted behavior is in reasonably good agreement with 
observations of extra energy dissipat,ion in carbon black-filled rubbers, in comparison 
with corresponding unfilled rubbers, suggesting that the proposed mechanism of hystere- 
sis by phase transformation is valid. A method of combining energy losses from two 
simultaneous dissipative processes is also proposed. 

INTRODUCTION 

Fillcd rubbers show a characteristic softening after straining, shown 
schematically in Figures 1 and 2. After a previous extension el, the 
material is softer for subsequent extensions less than el but unaffected for 
extensions greater than el. Moreover, almost all of the softening is achieved 
in the first extension, little further softening taking place during subse- 
quent strain cycles up t o  el. 

Two principal methods of characterizing the degree of softening have 
been proposed. The first, due to Mullins and Tobin, is based on similarity 
between the second extension relation and that exhibited by the corre- 
sponding unfilled rubber. A two-phase series model is therefore proposed: 
an original hard phase and a softer phase, resembling the unfilled material, 
formed from the hard phase by a stress-induccd transformation (Fig. 3). 

The fractional amount Q of material transformed into the soft phase is 
assumed to increase continuously with imposed stress. After a given 
stress level has been attained, howcver, the fraction Q remains unaltered 
for subsequent deformations at stresses which do not exceed this level. 
This two-phase model accounts satisfactorily for the initial stress-softening 
process and for thc stress-strain behavior of softened material, in terms of 
a simple physical representation of filled rubber. It is necessary to know 
only the stress-strain behavior of the corresponding unfilled rubber and 
the rclation between Q and prior stress (or prior strain). A more detailed 
account of the model is given in the following section. 
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Fig. 1. Tensile stress-strain relations for a carbon black-filled SBR material, subjected 
to successive extensions of increasing amount. 

extension retraction 
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FIG. 2. Schematic diagram showing input energies Wl and Ws, and energies W2 and Wh 

returned on retraction. 

(a I (b)  
Fig. 3. Two-phase model of filled rubber: (a) partially softened; (b) stretched. 
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Fig. 4. Experimental relations between energy dissipation ratio H and input energy 
Curve 2 from Dannen- W1. 

berg.2 Broken curve: 
Curve 1 from Harwood et al.4 and Charrier and Gent.6 

theoretical relation (H’) calculated as described in text. 

A second way of characterizing the amount of softening is by means 
of the energy loss ratio H = (Wl - Wz)/W,, where W1 denotes energy input 
on stretching and Wz denotes energy returned on retraction (Fig. 2). 
The dissipation ratio H z  for a second strain cycle, given by (W3 - W,)/W3, 
is found to be appreciably smaller than H ,  and all subsequent strain cycles 
yield similar values. To the degree that H exceeds Hz, therefore, the mate- 
rial undergoes a unique softening process during its first straining. 

A general relationship has been proposed to  exist between H and the 
input energy W1,  for filled  rubber^.^-^ It is shown in Figure 4. Unfilled 
rubbers show a similar dependence of energy dissipation upon input energy, 
although the values obtained for H are somewhat lower in this case, 
about three fourths as large (Fig. 5 ) .  (Values similar to  those for filled 
rubbers have been reported for a strain-crystallizing rubber under high- 
strain conditions4, when extensive crystallization occurs. Unfilled non- 
crystallizing rubbers, although difficult to examine at  high strains because 
of their lower strength and extensibility, appear to  give generally lower 
values for H.)  

We now turn to the relationship between these two different representa- 
tions of stress softening. In  the following section, the energy loss ratio H 
is calculated as a function of input energy W1 for the two-phase series model 
proposed by Mullins and Tobin, assuming that both the hard and soft 
phases are themselves perfect,ly elastic, nondissipative materials, but 
that energy is inevitably dissipated in the transformation step. The 
combined effect of this energy dissipation due to  phase transformation and 
energy losses within the softened phase (assumed to behave like the cor- 
responding unfilled material) is then calculated and compared with ex- 
perimental measurements on filled rubbers. 
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Fig. 5. Energy dissipation ratio H ,  vs. input energy W,  for unfilled rubbers. 
(0) Henry.* 

Results 
from: (A)  Harwood et al.4; (0) Charrier and Gent.6 

STRESS-SOFTENING EFFECTS AND ENERGY DISSIPATION 
IN A TWO-PHASE SERIES MODEL 

The Mullins-Tobin model for a partially stress-softened material is 
shown schematically in Figure 3. We consider first how the softened frac- 
tion a increases (presumably from zero) as the material undergoes its 
first extension. The simplcst possible relation between a and the imposed 
extension is a linear one, e.g., 

a = ke (1) 
where e is the overall extension. This form is also suggested by stress- 
strain relations for previously stretched test pieces. They may be super- 
imposed by scaling the strain axis appropriately in each case, using a multi- 
plying factor a-l which depends upon the previous strain in accordance 
with eq. (1). Experimental values for k obtained in this way range from 
0.06 to 0.16, increasing as the amount of filler or its reinforcing power 
decreascs.' Indced, the parameter k may be regarded as an inverse mea- 
sure of the strcngth of the hard phase. 

If the hard phase is completely inextensible, then the actual extension 
e, of the softened phase is given by e /a  (= k-'). Thus, on this hypothesis, 
the softened phase undergoes a constant extension (k-I) .  The softening 
transformation will therefore occur at constant stress, whatever form of 
stress-strain relationship is obeyed by the softened phase. This is con- 
trary to general experience: thc first deformation is not usually found to 
take place at  constant strcss (although stress-strain relationships of this 
form arc observed in some circumstances; for example, when large amounts 
of filler arc employed5). 

We now suppose that the hard phase is not completely inrxtcnsible but 
is mercly a stiffer version of the soft phase, so that for any applied stress 
the strain en of thc hard phase is a constant fraction ,6 of the strain e,  in the 
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soft phase. 
the soft phase, is given by 

In this case the overall strain e, relative to the strain e ,  in 

a' (= ele , )  = a (1 - p) + p ( 2 )  

where a is the fractional amount of soft phase present. The value of a 
now depends in an unknown way upon the prior extension e l .  In practice 
it appears to  be approximately linearly dependent,' as in eq. (l), and the 
value of @ is found to  be approximately 0 .1 . '~~  

In order to calculate the energy input W1 and energy regained WZ to 
determine the loss ratio H ,  we need to  know stress-strain relationships for 
the hard and soft phases. The energy input W1 is then given by 

where f denotes the applied stress (force per unit of unstrained cross-sec- 
tional area) a t  an overall extension e during the first extension. The energy 
W2 returned is given by 

w2 = a w s , e ,  + (1 - a)Wh,ei 
= ( Y ' W ~ , ~ ,  from eq. (2)  (4) 

where W ,  and Wh denote strain energy densities in the soft and hard 
phases, respectively . 

For illustrative purposes, two particularly simple forms for f and W ,  
are employed here: those for a linearly elastic material, obeying Hooke's 
law, i.e., 

f = Eses ( 5 )  

W ,  = l/z Eses2 (6) 

and 

where E,  is Young's modulus for the soft phase; and those for a neo-Hoo- 
kean material obeying the kinetic theory of rubber-like elasticity,' i.e., 

f = '/3Es(Xs - (7) 

(8)  

where A, = 1 + e,. 
For a linearly elastic material, the maximum value of the energy dis- 

sipation ratio H is obviously 0.5 (Fig. 6) when the hard phase is completely 
inextensible (p  = 0). The corresponding result for neo-Hookean materials 
when the hard phase is inextcnsible is similar, but it now depends slightly 
upon the value chosen for k; as k increases from 0.05 to 0.2, the value ob- 
tained for H decreases from 0.478 to  0.442. Thus, for a wide range of elastic 
behavior and stress-softening criteria, the maximum value obtained for 
H lies between 0.44 and 0.5. Under the worst conditions, therefore, nearly 

and 

w, = '/$,(X,2 + 2X,-' - 3) 
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Fig. 6. Stress-strain relation for a two-phase series model with transformation taking 
place from an inextensible hard phase to  a linearly elastic soft phase a t  constant stress. 

H 
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Fig. 7. Theoretical relations between the energy dissipation ratio H and input energy 
TI for a two-phase linearly elastic model; @ denotes the stiffness ratio of the two phases. 
The softening parameter k, defined by eq. (l), is given the value 0.1. 

one half of the input energy is dissipated. This result is rather indepen- 
dent of details of the model employed. 

Finite values of /3 are now considered, corresponding to various levels 
of hardness of the hard phase. Values of the energy dissipation ratio H 
may be calculated from eqs. (3) and (4), using either eqs. (5) and (6) or 
eqs. (7) and (8) for f and W ,  and integrating eq. (3) using relations between 
e and e,  obtained from eqs. (1) and (2). Some results for linearly elastic 
materials are shown in Figure 7 for a wide range of values of /3, using a 
representative value of k (O.l), and in Figure 8 for a wide range of values 
of k ,  using a representative value of p (0.1). 

At a particular 
level of deformation e and energy input W,, determined by the parameter 
k in eq. (l), the fraction a! of material in the soft phase becomes equal to 
unity. At this point, all of the material has been transformed into the 
softened state. For larger deformations, therefore, the extra deformation 
energy supplied is wholly regained on release because it is devoted solely 

One special feature of these calculations should be noted. 
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Fig. 8. Theoretical relations between the energy dissipation ratio H and input energy 
W1 for a two-phase linearly elastic model, with various values for the softening parameter 
k. The stiffness ratio p is given the value 0.1. 
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Fig. 9. Theoretical relations between the energy dissipation ratio H and input energy 

The W ,  for a two-phase neo-Hookean model, with various values of the stiffness ratio p. 
softening parameter k is given t.he representative experimental value 0.11.1*6 

to stretching softened material, assumed here to  be perfectly elastic. The 
energy dissipation ratio H will thus decrease continuously after that de- 
formation at which CY = 1 is passed, because an increasing proportion of 
the total energy input is then returned without loss. This feature is clear 
in Figures 7 and 8. 

In  Figure 9, results are given for a two-phase series model using neo- 
Hookean materials, eqs. (7) and (8), with a wide range of values for the 
stiffness ratio p and a particular value of k ,  0.11, found to apply to a repre- 
sentative carbon black-filled materia11v6 (50 parts by weight of HAF N330 
carbon black per 100 parts by weight of sbyrene-butadiene copolymer SBR 
1502, plus the usual vulcanization additives). Again, the choice of a diff erent 
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strain energy function and stress-strain relation has not materially altered 
the results. 

The relations shown in Figure 9 are closely similar to those shown in 
Figure 7, the principal difference being in the scales employed for W1. 
Neo-Hookean materials show pronounced nonlinearity in their tensile 
stress-strain behavior, eq. (7); in conscquence, the input energy at  rela- 
tively large strains is smaller relative to  Young’s modulus E than i t  is for 
linearly elastic materials. This difference is reflected in the WJE,  scales 
in Figures 7 and 9. For neo-Hookean materials (Fig. 9), similar values 
of H are obtained when the values of WJE,  are only about one third of 
those for the linearly elastic rnatcrials, Figure 7. In  all other respects, 
however, the loss ratios in neo-Hookean systems are calculated to  be 
quite similar to  those in linearly elastic systems. Indeed, other calculations 
yielded similar values for H when strcss-strain relations incorporating finite 
extensibility cffects (turning sharply upward as a maximum extension is 
approached) were employed in place of those discussed here. We conclude 
that the results for H are not particularly sensitive to  the form chosen 
for the stress-strain relationship of the soft phase. In the following sec- 
tion, the results for neo-Hookean matcrials (Fig. 9) are employed for com- 
parison with experimental results for filled rubbers. 

Combined Effects of Stress Softening and Energy Dissipation 
in the Soft Phase 

Energy is dissipated in stretching the softened phase, presumably by the 
same mechanisms and to the same degree as in stretching the corresponding 
unfilled material. The energy Wz’ available on release will therefore be 
less than the amount W z  calculatcd from eq. (4), i.e., the energy required to 
stretch the soft and hard phases to  their strain conditions at an overall 
extension el. Neglecting the relatively small proportion of strain energy 
stored in the hard phase, we assume that a fraction H,W2 of the energy Wz 
is dissipated in processes which take place in the soft phase, where H, is 
the energy loss ratio for unfilled rubber at an energy input of Wz. Thus, 
the overall dissipation ratio H‘, defined by (W1 - WZ‘)/Wl, will be given by 

H‘ = H + H, - H H ,  (9) 

where H is obtained from eqs. (3) and (4). 
Values of the overall dissipation ratio H’ can now be calculated by means 

of eq. (9), provided that values of H, are available. The procedure adopted 
here is as follows. First, values of the energy dissipation ratio H are cal- 
culated on the assumption that no energy is dissipated in the soft phase 
by means of eqs. (3) and (4), for a wide range of values of W1 and using 
appropriate values for the stiffness ratio @, softening parameter k, and 
Young’s modulus E, of the soft phase. Typical results are given in Figure 
9 for neo-Hookean materials. Then, using corresponding values of Wz, 
values of H ,  are read from the experimentally determined relation between 
H ,  and W1 given in Figure 5 .  Finally, values of H’ are calculated from 
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eq. (9). Typical relations between H’ and input energy W ,  obtained in 
this way are represented in Figure 4 by a broken curve. They were cal- 
culated using values for E, of 1-2 R/ZN/m2 (10-20 kg/cm2), for fi of 0.05- 
0.1, and for k of 0.11. As the resulting relations are all rather similar, 
only an average result is shown in Figure 4. 

Reasonably satisfactory agreement is seen to be obtained between cal- 
culated overall dissipation ratios H’ and experimentally determined values. 
At large deformations, the predicted results seem slightly lower than the 
measured values, but in this region the calculations involve values of H ,  
at  large deformations, where they are difficult to determine and somewhat 
uncertain (Fig. 5). On the whole, the general magnitude of energy dis- 
dipation in filled rubbers and its dependence upon strain seem fully ac- 
counted for by the combined effects of phase transformation and hysteresis 
in the soft phase resembling that in unfilled rubbers. 

DISCUSSION AND CONCLUSIONS 

Several features of this comparison between calculated energy dis- 
sipation and measured values call for comment : 

(i) Values of H and H,,  the loss ratios for phase transformation alone 
and for soft-phase hysteresis alone, are generally rather similar in mag- 
nitude, the former being larger a t  low deformations and the latter, a t  high 
ones. Thus, the two contributions are of roughly equal importance. This 
point has not been recognized in the p a ~ t , ~ , ~  probably because the two 
quantities are not simply added together to yield the overall dissipation 
ratio but are combined in a more complicated way, eq. (9). For example, 
if H is 0.5 and H ,  is 0.6, the overall dissipation ratio H’ is O.S. In  these 
circumstances, if H ,  alone is compared with H ‘ ,  it might well be concluded 
that hysteresis of the unfilled material accounts for the major part (3/4) 

of the observed energy loss, whereas its contribution in this example is 
quite similar to that from phase transformation. 

(ii) The proposed relationship for two dissipative processes occurring 
simultaneously, eq. (9), may have general applicability. It is clearly 
correct when either H or H ,  is zero and also when either H or H ,  is unity, 
and thus is probably valid over the entire range. 

Calculated values of the energy loss ratio H are surprisingly in- 
dependent of details of the two-phase model employed, within the range 
appropriate to  normal filled rubbers. However, some general trends are 
evident. Energy losses are higher when the relative hardness of the hard 
phase is increased (Figs. 7 and 9), and higher energy losses are observed at  
lower deformations when the transformation takes place more rapidly with 
deformation (Fig. 8) .  

The maximum energy input employed for carbon black-filled rub- 
bers, about 3 X lo7 J/m3, is almost but not quite enough to  bring the mate- 
rial completely to the softened state, a = 1. It waq not found necessary to  
continue calculations past the deformation at  which (Y = 1 in order to ac- 

(iii) 

(iv) 
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count, for the observed energy losses (Fig. 4), using reasonable values for E,  
8, and k. However, other less strongly reinforced materials might con- 
tinue to  deform after the whole sample is softened. They should then ex- 
hibit smaller loss ratios a t  high strains than at  intermediate strains. 

It is noteworthy in this connection that filled rubbers show a rather pro- 
nounced maximum in loss ratio a t  small deformations, under repeated 
(dynamic) straining condition~.~~'0 A small-strain softening process, 
associated with the disruption of carbon particle associations, is known to 
take place under these circumstances. If it can also be successfully repre- 
sented by a two-phase series model; i.e., if the present hard phase can be 
regarded as a two-phase material, transforming from a harder to a less hard 
state a t  quite low strains, then the analysis outlined here should also apply. 
However, it is necessary to assume that recovery from stress-induced soften- 
ing occurs between one deformation and the next if the present model is 
employed to  predict energy losses under repeated deformations. Small- 
strain dynamic softening seems to  be in part recovered and in part relatively 
permanent,s-12 although full information on this aspect is lacking. 
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